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Achieving 
management  

outcomes
>

Fitting an unbiased 
stock assessment 

in any 1 year

Modern fisheries have entered a 
management-oriented paradigm

“Pretty good management will do.” - De La Mare 2006

“Minimum sustainable whinge.”  - Pope 1983



 5

Modern fisheries have entered a 
management-oriented paradigm



MSE helps us choose management 
procedures under uncertainty

• At its heart, MSE is a risk analysis, 
asking “What are the consequences 
of a certain decision, given the current 
state of knowledge about a system 

• Management Strategy Evaluation uses 
closed loop simulation to test 
candidate management procedures 
(decisions) under system uncertainty 
(operating models) 

• Management procedures are 
combinations of data collection, 
assessment methods, and harvest 
control rules 

• MPs are evaluated against 
quantitative management objectives

Punt et al 2016
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Conditioning the operating model:  
implications for management 

outcomes
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Operating models should be 
conditioned on the data

• “Operating model components… must be 
conditioned on the available data… so that model 
predictions of the data are consistent with actual 
data.” (Kell et al 2006)

• ”Operating model parameters are selected (ideally 
by fitting or ‘conditioning’ the operating model(s) 
to data from the actual system under 
consideration)” (Punt et al 2016)
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Best practices for conditioning 
OM parameters on data

Fit at least one OM to the data, and choose one of the 
following, in order from most to least ideal (Punt et al 2016) 

1. Bayesian: Produce a Bayesian posterior via your 
favourite MCMC method 

2. Bootstrap: Bootstrap estimated observation and process 
errors, refit the OM and generate distributions of leading 
parameters 

3. Normal Approx: Use covariance matrix produced by 
optimisation and draw from a normal approximation of the 
posterior
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A quick description of the path from 
posterior to objective performance metric
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MSE models must run fast enough to 
provide timely advice

• MSE work is by its nature iterative, 
and within a single cycle models are 
potentially fit thousands of times 

• Analysts learn as each iteration 
brings new information, leading to 
changes (tweaks) in OMs and MPs 

• 5000 replicates takes time! 

• For these data based MPs, 6 
hours 

• For the model based MP tested in 
the last MSE cycle, 16 hours for 
100 reps (=> 800 hours for 
5000!)

Punt et al 2016
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Sampling from the posterior is used to 
reduce the number of replicates required
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PAS
SED

Sampling from the posterior is used to 
reduce the number of replicates required
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PAS
SED

But performance metrics are sensitive to 
the random seed used to take samples
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Sampling from the posterior is used to 
reduce the number of replicates required
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Conditioning may affect the final 
choice of MP

To summarise the previous slide, MP objective performance 
metrics are random variables 

They are drawn from a distribution that is conditioned on 

1. The data, via the posterior, 

2. The method used to sample posterior parameter 
distributions, and 

3. Process and observation errors in the projections 

Differences in performance metrics caused by these three effects 
could expand or shrink the pool of acceptable MPs
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Our previous attemps 
to improve sampling
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Sablefish: weighted sampling of the joint 
marginal of two posterior dimensions

• We sampled 5 points from the 
Bayesian posterior to create 5 OMs  

• posterior mean (ref OM) 

• 10th and 90th precentiles of the 
marginal B2017 and steepness 
distributions (optimistic and 
pessimistic OMs) 

• Ran 100 replicates at each point 

• Sampled each OM weighted by 
relative posterior density at 
corresponding points 

• We weren’t sure if this made a large 
difference or not - which is why we 
started this work BC Sablefish, 2016

Cox, Holt and Johnson, 
CSAS In Press
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WCVI Herring: stratified sampling of joint 
marginal posterior into conditional centiles.

• Noticed sensitivity to seed 
values when conditioning the 
operating model 

• Designed a conditional 
stratified sampling design 
which broke joint marginal 
posterior of 2 dimensions 
into centiles 

• Stratified joint marginal of M 
and B0 

• Randomly sampled 1 point 
within each centile

WCVI Herring, 2018
Cox, Johnson, Cleary, and Benson, 

CSAS In Press
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Stratification of joint marginal posterior into 
conditional centiles.

WCVI Herring, 2018
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Testing different 
sampling designs
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Best practices for conditioning 
OM parameters on data

Fit at least one OM to the data, and choose one of the 
following, in order from most to least ideal (Punt et al 2016) 

1. Bayesian: Produce a Bayesian posterior via your 
favourite MCMC method 

2. Bootstrap: Bootstrap estimated observation and process 
errors, refit the OM and generate distributions of leading 
parameters 

3. Normal Approx: Use covariance matrix produced by 
optimisation and draw from a normal approximation of the 
posterior
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Conditioning may affect the final 
choice of MP

• To summarise the previous slide, MP objective performance 
metrics are random variables 

• They are drawn from a distribution that is conditioned on 

1. The data, via the posterior, 

2. The method used to sample posterior parameter 
distributions, and

3. Process and observation errors in the projections 

• Differences in performance metrics caused by these three 
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Research questions: can we define some best 
practices for taking samples to condition the OM?

1. What sampling methods are best suited to reducing the 
sensitivity of the objective performance metrics to sample 
size and random seed? 

2. What is the minimum number of samples required to  

A. fix the ranking of MPs for each sampling method? 

B. reduce variance of metrics within some tolerance? 

3. What qualities can be used to identify a good sample before 
significant time is spent in simulations, i.e. filter samples so 
that variance of metrics is within some tolerance?

 36
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Other sampling methods: joint 
marginal stratification - jmarg

This is the same method as used in 
the previous Herring MSE, except: 

• Now splitting into 25 equal 
density regions - 5x5  

• Depending on sample size, may 
take multiple draws from each 
cell 

• Shown: 100 samples
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(McKay, Beckman, and Conover 2000)



Latin hypercube sampling exploits 
the properties of a latin square - 
think Sudoku 

Every entry appears in each row 
and column exactly once. 

Sampling from cells marked with 
the same entry will spread 
sampling evenly across the 
dimensions

 39

(McKay, Beckman, and Conover 2000)

Other sampling methods: latin hypercube 
samping (space filling design) - LHS
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Other sampling methods: latin hypercube 
samping (space filling design)
Other sampling methods: latin hypercube 
samping (space filling design) - LHS

(McKay, Beckman, and Conover 2000)



For a posterior distribution,  

1. stratify each margin into strata of 
equal density 

2. Label resulting hypercubic 
design with the latin property 

3. Sample within each cell 

We need to approximate because 
we have a discrete posterior (clhs 
package, Roudier 2011)
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Other sampling methods: latin hypercube 
samping (space filling design)

(Roudier 2011)
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Other sampling methods: latin hypercube 
samping (space filling design)

(Roudier 2011)

Only 1 point in 
here

Other sampling methods: latin hypercube 
samping (space filling design) - LHS

(McKay, Beckman, and Conover 2000)



Results
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Random sampling holds its own for the 
standard sample size

• Ranking is stable 

• At 100 samples the three 
methods don’t appear to be 
differentiated for our example MP 
and objective 

• All appear to be asymptotically 
unbiased (phew)  

• Some skew apparent in the joint 
marginal and simple random 
sampling designs, less in LHS
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Random sampling holds its own across 
all sample sizes

• Ranking was stable above 50 samples 

• Random sampling is actually less 
variable at S = 50 

• LHS, which I expected would do the 
best, doesn’t appear to outperform in 
any significant way until S = 200 - this 
may be too large for most 
applications, especially model based 
MPs 

• Some skew apparent in distributions, 
possible causes 

• approximate LHS 

• choice of margins for jmarg
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Loss functions make it easier to see the 
trend in performance

• Loss curves show the mean 
relative error and mean absolute 
error of the objective metrics as a 
function of sample size 

• Fluctuations in mean relative error 
for each method (~ 0.5% of the 
true value) 

• As expected, mean absolute error 
declines with sample size 

• Shows real benefit of stratified 
sampling is at lower sample sizes, 
or above 100 samples, with 
marginal gains otherwise
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Some sensitivity to the objectives as 
well
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Loss pattern remains similar over 
objectives

 48



Averaging loss over multiple MPs 
shows a similar picture
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Discussion
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Research questions: can we define some best 
practices for taking samples to condition the OM?

1. What sampling methods are best suited to reducing the 
sensitivity of the objective performance metrics to sample 
size and random seed? 

2. What is the minimum number of samples required to  

A. fix the ranking of MPs for each sampling method? 

B. reduce variance of metrics within some tolerance? 

3. What qualities can be used to identify a good sample before 
significant time is spent in simulations, i.e. filter samples so 
that variance of metrics is within some tolerance?
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Partway to discovering the effect of sampling 
design on MP performance metrics (Q1)

1. Differences between sampling methods is largest at small sample 
sizes, marginal at 100 points, and then better again at larger samples 

2. Marginal improvements may not seem like much, but 1 or 2 
percentage points could be the difference between passing or failing 
MSC certification (is P(Bt > Blim) >= .95?), or passing or failing the 
MSE process 

3. Number of samples where difference is made may be too low for 
differentiating ranking, or too high for practical applications
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Partway to discovering the effect of sampling 
design on MP rankings and variance (Q2)

1. understanding the effect of sample size and method on obj perf 
metric sensitivity can help make MSE more efficient - if ranking is all 
we care about, then smaller sample sizes may be adequate 

2. Next step: understand what it is about the samples that lie in the 
middle of each distribution - is there some quality we can detect and 
control for?
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Future work
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Still need to discover qualities of a “good” 
sample from the Bayesian posterior (Q3)

Hypothesis:

Low KL divergence will likely be correlated with low 
bias of obj performance metrics
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Normal approximations are next, with some 
guiding questions below.

Normal approximation of the posterior

• Test sampling designs under approximation 

• Does the number of samples required to 
adequately approximate the posterior increase? 
(symm. KL divergence) 

• If so, does increase in compute time outweigh 
the benefit of approximating the posterior 
(assuming MCMC can actually be run)?
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Thanks for listening!
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Questions/Comments?

1. What sampling methods are best suited to reducing 
the sensitivity of the objective performance metrics to 
sample size and random seed? 

2. What qualities can be used to a priori identify a good 
sample, i.e. bias within some tolerance? 

3. What is the minimum number of samples required to  

A. fix the ranking of MPs for each sampling method? 

B. reduce variance of metrics within some tolerance?
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