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1. Introduction

Lattice path models have enjoyed a sustained popularity in mathematics over the past 
century, owing in part to their simplicity and ease of analysis, but also their wide appli-
cability both in mathematics, physics, and chemistry. The basic enumerative question is 
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to determine the number of walks of a given length in a given model. The past fifteen 
years have seen many interesting developments in the asymptotic and exact enumeration 
of lattice models, with new techniques coming from computer algebra, complex analy-
sis and algebra. A first approximation to this value is the exponential growth constant, 
also called the connective constant, which itself carries combinatorial and probabilistic 
information. For example, it is directly related to the limiting free energy in statistical 
mechanical models.

Here, a lattice path model is defined by the steps that are allowed, and the region 
to which the walks are restricted (generally cones and strips). Particular focus has been 
on small step models (where the steps are a subset of {0, ±1}2) restricted to Z

2
≥0, and 

general approaches versus resolution of individual cases. For example, several distinct 
strategies for asymptotic enumeration have recently emerged. Fayolle and Raschel [10]
have determined expressions for the growth constant for small step models using bound-
ary value problem techniques. Recast as diagonals, techniques of analytic combinatorics 
of several variables apply to some of the models with D-finite generating functions [15,
16]. Also, the important sub-class of excursions is well explored via the probability work 
of Denisov and Wachtel [7, Section 1.5]. Bostan, Raschel and Salvy [5] made their results 
explicit in the enumeration context. Most of these asymptotic results are obtained with 
machinery which does not sustain a clear underlying combinatorial picture.

Many of these results exclude singular models: A two dimensional model is singular if 
the support of the step set is contained in a half plane. Many singular models are either 
trivial or reduce to a problem in a lower dimension. Singular models are considered 
in [17,14].

This paper provides a formula for an upper bound on the growth constant of the 
counting sequence for lattice models restricted to a convex cone, with intuitive combina-
torial interpretations of intermediary computations. Our formula is most explicit in the 
case of nonsingular 2-dimensional walks restricted to the first quadrant, but is valid for 
all models. The core of our strategy is based on the following basic observation:

In any lattice path model, the set of walks restricted to the first quadrant is a subset of 
the walks restricted to some half plane which contains that quadrant. Consequently, for 
any fixed length, the number of walks in that half plane is an upper bound for the number 
of walks in the quarter plane.

Bounds on walks in half planes are readily computable, for example using the results 
of Banderier and Flajolet [1]. Remarkably, we are able to give tight bounds on the growth 
constant by considering all of the half planes that contain the quarter plane. Further-
more, our bounds are insightfully tight in that they give a single simple combinatorial 
interpretation of the multiple cases treated by Fayolle and Raschel [10]. Our one idea 
unifies their cases, which depend on various parameters of the model. Our approach also 
applies to singular models. We use only the elementary calculus observation that a min-
imum of a real valued differentiable function f with domain D must occur either at the 
boundary of D or at a critical point τ ∈ D satisfying f ′(τ) = 0. This strategy remains 
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combinatorial and readily adaptable to models with larger steps, weighted steps, and to 
models in higher dimensions. Finally, there are implications for random generation, as 
we discuss in the conclusion.

In an earlier version of this article we conjectured that our bounds were tight. This 
led to a proof by Garbit and Raschel [11] that the bounds we find are tight under some 
conditions. These are quite general conditions, and include at least all of the nonsingular 
walks, for example. Simultaneously, and independently, similar results were proved by 
Duraj [9].

1.1. Conventions and notation

Let R be a convex cone in Rd, and let S be a finite multiset of vectors in Rd. Here, 
a walk is a sequence of steps, each step taken from S, starting at the origin. The set of 
walks of length n restricted to R is defined as the set

R(S)n = {(s1, s2, . . . , sn) : si ∈ S;
j∑

i=1
si ∈ R for 1 ≤ j ≤ n}.

The full set of walks, denoted R(S), is the union of these sets over all natural numbers 
n. By convention, we permit a single empty walk of length 0.

The cones we consider include half planes through the origin, and the first quadrant 
Z

2
≥0. The central quantity we investigate is the number of these walks, |R(S)n|. We write 

H = R × R≥0 for the upper half plane and Q = R≥0 × R≥0 for the first quadrant, and 
abbreviate hn = |H(S)n| and qn = |Q(S)n| when S is clear.

We say a model R(S) is nontrivial if it contains at least one walk of positive length, 
and if for every boundary of R, there exists an unrestricted walk on S which crosses that 
boundary at some point other than an intersection of boundaries (i.e. in two dimensions, 
not at the origin). The excursions are the sub-class consisting of walks which start and 
end at the origin. A step set is said to be singular if it is contained within a single half 
plane. A step set is said to be made of small steps if S ⊆ {0, ±1}2 \ {(0, 0)} and in this 
case we use the compass abbreviations NW ≡ (−1, 1), N ≡ (0, 1), NE ≡ (1, 1), etc. We 
also consider larger regions, and more general step sets in the examples.

The (exponential) growth constant of a sequence (an) is defined as the limit 
limn→∞ a

1/n
n , when it exists. This limit exists as a consequence of Fekete’s subaddi-

tivity lemma, see Hille [12]. It suffices to observe that the counting sequence is super-
multiplicative, that is,

an · am ≤ an+m.

Counting sequences for lattice models in cones satisfy this relation since a walk of length 
m + n can not necessarily be decomposed as a walk of length m followed by a walk of 
length n that both remain in the cone. Indeed, equality an · am = an+m does not hold 
in general.
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Fig. 1. Graphs of KS(θ) for various S.

We denote the growth constant of quarterplane walks by

KS = lim
n→∞

q1/n
n .

The present work determines bounds for this growth constant.
Our strategy uses the simple relation that if Q ⊂ R, for some cone R, then Q(S)n ⊂

R(S)n and hence qn ≤ |R(S)n|. This is true for all n, hence it is also true that limn q
1/n
n ≤

limn |R(S)n|1/n. It turns out, by considering well chosen regions, we are able to perfectly 
bound the growth constant KS . Our preferred bounding regions are the half planes

Hθ = {(x, y) : x sin θ + y cos θ ≥ 0}

where θ ∈ [0, π/2]. We denote by KS(θ) the growth constant of the sequence of the 
number of walks of length n in this region:

KS(θ) = lim
n→∞

|Hθ(S)n|1/n.

Using the relation

KS ≤ KS(θ) for all 0 ≤ θ ≤ π/2,

we can deduce bounds on KS by finding explicit expressions for KS(θ). Fig. 1 gives 
several examples for several different stepsets.

1.2. The main result and the plan of the paper

Our main result, Theorem 8, is an explicitly computable bound on KS , and its com-
binatorial interpretation. It is determined by minimizing KS(θ) as a function of θ. In 
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several cases it is easily seen to be tight, by comparing to the well-understood subclass 
of excursions.

We start at Lemma 7, where we adapt the formulas of Banderier and Flajolet to give 
a formula for KS(θ), for given S and θ. We then show that KS(θ) defines a continuous 
function in θ. Since each Hθ contains Q, KS(θ) is an upper bound on KS for any θ
satisfying 0 ≤ θ ≤ π/2. Finally, we determine the location of the minimum upper bound 
in Theorem 8 by basic calculus techniques, since KS(θ) is an explicit function of θ.

In Section 4, we show that these results give precisely the values found by Fayolle and 
Raschel for the nonsingular models, demonstrating the bounds are tight. It is Theorem 12
which vindicates the description of this work as a combinatorial interpretation of the 
formulas provided by Fayolle and Raschel.

Our strategy applies to more general classes of models, for example, multiple steps 
in the same direction, longer steps, and higher dimensional models. The quantities we 
recover in these cases are, transparently, upper bounds and they can be compared against 
experimental data as a check for tightness. This led us to conjecture that our approach 
gives tight upper bounds more generally and hence actually finds the growth constants, 
which has subsequently been proven under some general hypotheses [11, Corollary 10]
through probabilistic arguments.

2. Walks in a half plane

Models restricted to a half plane are well understood, and we recall here some basic 
results. The set H(S) of walks restricted to the upper half plane with steps from the finite 
multiset S is in bijection with unidimensional walks with steps from the multiset A =
{j : (i, j) ∈ S} because horizontal movement does not lead to any interaction with the 
boundary of H. We thus consider half plane models as unidimensional models defined by 
sets of real numbers. We retain the same notation, and meaning:

H(A)n = {(a1, a2, . . . , an) : ai ∈ A;
j∑

i=1
ai ≥ 0, 1 ≤ j ≤ n}

denotes the set of walks of length n starting at 0. The multiset A is said to be nontrivial, 
if it contains at least one positive and one negative value. There are two ways for a 
multiset A to be trivial in a half plane: either A contains only non-negative elements 
and we call it unrestricted; or A contains only non-positive elements. Unless otherwise 
stated, we assume that the models are nontrivial. It is worth noting that Theorem 1 still 
holds in the unrestricted case.

The key ingredients for the enumeration formulas are as follows. The drift of A is the 
sum δ(A) =

∑
a∈A a and the inventory of A is A(u) =

∑
a∈A ua; notice that these are 

related by δ(A) = A′(1).



S. Johnson et al. / Advances in Applied Mathematics 92 (2018) 144–163 149
Theorem 1 (Modified from Theorem 4 of Banderier and Flajolet [1]). Let A be a multiset 
of integers which defines a nontrivial unidimensional walk model. Let A(u) =

∑
a∈A ua. 

The number hn of walks of length n in H(A) depends on the sign of the drift δ(A) = A′(1)
as follows:

hn ∼

⎧⎪⎪⎨
⎪⎪⎩
ν0 A(1)n if δ(A) > 0
ν1 A(1)n n−1/2 if δ(A) = 0
ν2 A(τ)n n−3/2 if δ(A) < 0

.

Here τ is the unique positive critical point of A(u) and ν0, ν1 and ν2 are explicit, real 
constants.

Proof. This follows directly from [1]. Remark the case of unrestricted walks with steps 
from A, hn = |A|n = A(1)n so setting ν2 = 1 gives the result. �

The study of the growth constant originates in the probability literature [8]. On the 
enumerative side, Banderier and Flajolet prove these formulas by applying transfer the-
orems to explicit generating functions, which they first derive. The strategy requires 
integer steps however: The models with real-valued steps are not necessarily representable 
by context-free grammars, and the generating functions are not necessarily algebraic. It 
is rather straightforward to deduce the general case from the integer case by a limit 
argument which we present next.

Theorem 2. Let A be a multiset of real numbers which defines a nontrivial unidimensional 
walk model. Let A(u) =

∑
a∈A ua. The number KA = limn→∞ h

1/n
n , where hn is the 

number of walks of length n, depends on the sign of the drift δ(A) = A′(1) as follows:

KA =
{
|A| if δ(A) ≥ 0
A(τ) otherwise.

(2.1)

Here τ is the unique positive critical point of A(u).

First a few comments about τ . Since δ(A) = A′(1), by uniqueness of τ , if δ(A) = 0
then τ = 1. Similarly, if δ(A) < 0, then τ > 1 by the convexity of A(u) (derived below). 
When δ(A) > 0, then τ < 1, but KA = |A| = A(1). We can combine these three cases 
into a single equation since τ is a unique local minimum. We rewrite Equation (2.1) as

KA = min
u≥1

A(u). (2.2)

This could be viewed as a one dimensional analogue of our main formula.
It should be emphasized here that these formulas all still hold in the unrestricted 

case. In that case, the drift is nonnegative, and hn = |A|n. Thus, the theorem is also 
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true under weaker hypotheses. Theorem 1 establishes Formula 2.1 for A ⊂ Z. The proof 
for other real nontrivial models A ⊂ R is established from the integer base case in three 
steps:

1. We show that if Equation (2.1) holds for the multiset A, then it is also true for the 
multiset rA = {ra : a ∈ A} when r > 0 in Lemma 3;

2. We then deduce that the formula holds for multisets of rationals in Remark 4;
3. Finally, we prove that the formula holds for multisets of reals by proving that a 

limiting construction of rational models gives the result. This is done in Section 2.3.

We remark that the growth constant of the sequence counting the number of excur-
sions of length n in H (in the integer case) can be shown to be A(τ) using a strategy 
similar to the proof of Theorem 1 [1, Theorem 3]. The excursion formulas for integers 
do not automatically become formulas for the general real case, since if the reals are not 
rational multiples of each other, there are no excursions. To determine a formula, the 
reals much first be partitioned into subsets where they satisfy some integer relations.

2.1. Some facts about the inventory A(u)

The first two steps of the proof of Theorem 2 follow from basic behavior of A(u).

Lemma 3 (Scaling lemma). Let A be a finite multiset of real numbers which is either 
unrestricted or nontrivial and let A(u) =

∑
a∈A ua. Suppose further that Equation (2.1)

holds for KA. For any r > 0, define B = rA = {ra : a ∈ A}. Then the growth constant 
KB of the sequence bn = |H(B)n| satisfies

KB =
{
|B| if δ(B) ≥ 0
B(τB) otherwise

. (2.3)

Here B(u) =
∑

b∈B ub and τB is the unique positive critical point of B(u).

Proof. The lattice model H(B) is combinatorially isomorphic to H(A), so their growth 
constants are the same. The formula follows because their drifts have the same sign, and 
since B(u) = A(ur) and τB = τ

1/r
A , thus B(τB) = A(τA). �

Remark 4. For any finite multiset of rational numbers B, there is an r > 0, for example, 
the least common multiple of the denominators in B, so that A = rB is a multiset of 
integers. By Theorem 1, KA satisfies Equation (2.1), and hence Equation (2.3). Conse-
quently, by Lemma 3, since B = 1

rA, it is also true that KB satisfies Equation (2.3).

Lemma 5 (A(u) is strictly convex at its minimum). Given a finite multiset A of 
real numbers which defines a nontrivial unidimensional model, the real valued func-
tion A(u) =

∑
a∈A ua has a unique positive critical point τ . The function is minimized
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at this point, and is strictly convex on a neighborhood of τ . Furthermore, if δ(A) = 0, 
then the unique critical point occurs at u = 1, and if δ(A) < 0 then it occurs at u > 1.

Proof. If there are no elements in the range (0, 1) then the convexity result holds term 
by term. Otherwise it is possible to scale so that all elements are outside of that range.

Finally, if δ(A) = 0, then A′
A(1) = 0. Thus, by the uniqueness of the positive critical 

point, τA = 1. By similar analysis the negative drift case holds. �
2.2. The continuity of A(τA) as a function of A

To prove Theorem 2, we consider the function A(u), evaluated at its critical point. 
In particular we view this as a function of the step lengths. In the following lemma, �
represents the number of elements in the step set.

Lemma 6. Let F : R� × R>0 → R be the function defined by

F ((x1, x2, . . . , x�), u) = F (x, u) =
�∑

j=1
uxj .

Furthermore, let a ∈ R
� have at least one positive component and one negative com-

ponent, and denote by τ(a) the unique positive critical point of the map u 
→ F (a, u). 
There is a neighborhood U of a such that the function

κ(x) = F (x, τ(x)),

is continuous in x on U .

Proof. The results is a consequence of the implicit function theorem applied to f(x, u) =
∂F (x,u)

∂u around the point a. �
2.3. Proof of Theorem 2 in the case of real multisets

Proof of Theorem 2. Let A ⊂ R be a finite multiset of real numbers which is either unre-
stricted or nontrivial. To prove that KA satisfies Equation (2.1) we build two sequences 
of rational step sets which converge to A. We then squeeze the growth constant KA
of hn = |H(A)n| into the desired form.

For each a ∈ A, let {a+
i } and {a−i } be rational sequences satisfying

0 ≤ a+
i − a ≤ 1

2i and 0 ≤ a− a−i ≤ 1
2i .

We define two multisets

A+
i = {a+

i : a ∈ A} and A−
i = {a−i : a ∈ A}.
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The drift is additive, thus for each i,

δ(A−
i ) =

∑
a∈A

a−i ≤
∑
a∈A

a ≤
∑
a∈A

a+
i = δ(A+

i ).

Note that Remark 4 applies to both A−
i , and A+

i because both are multisets of rational 
numbers and hence (2.1) is valid for the growth constants, KA−

i
and KA+

i
respectively.

Given a one dimensional walk which remains in the upper half plane, a walk produced 
by lengthening every positive step slightly, and shortening every negative step, will also 
remain in the upper half plane. Thus, by the construction of A+

i and A−
i we get a natural 

injection

H(A−
i ) ↪−→ H(A) ↪−→ H(A+

i )

and hence

KA−
i
≤ KA ≤ KA+

i
. (2.4)

We claim

lim
i→∞

KA−
i

= KA = lim
i→∞

KA+
i
,

and KA is given by the formula of Theorem 1. To prove this claim observe the following. 
In all cases A±

i → A and hence δ(A±
i ) → δ(A).

In the case of A of positive drift, the result is clear, since KA is squeezed between two 
(eventually) constant sequences with the same limit, namely, |A|.

In the case where A is of negative drift, we appeal to Lemma 6. For sufficiently large 
i the values of KA−

i
and KA+

i
are merely evaluations of κ. Consequently, both limits 

limi→∞ KA±
i

exist, and are the same value, by continuity. By Equation 2.4 and the 
squeeze theorem, we have that KA is also an evaluation of κ.

Finally, in the case δ(A) = 0 we verify that the lower limit and the upper limit agree. 
The upper limit is |A| since the drift is nonnegative. The lower limit is given by a set of 
walks with negative step set, whose exponential growth is given by κ evaluated at the 
critical point. Since the drift of these models is tending to 0, the critical points are tending 
to 1 (Lemma 5). The inventory evaluated at 1 is the number of terms, precisely |A|.

In summary,

lim
i→∞

KA±
i

=
{
|A| if δ(A) ≥ 0
A(τA) otherwise

and the result follows by the squeeze theorem. �
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Fig. 2. Three representations for models of walks with steps from S = {N, E, SW} restricted to the 
region {y ≥ −2x}, defined by θ = arctan(2): (A) Hθ(S), and its unidimensional projection and (B)

H({1, 2, −3}), a scaling of A(θ). (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

2.4. Other half planes

Next, we extend to other half planes, each defined by an angle: Hθ = {(x, y) : x sin θ+
y cos θ ≥ 0}. Note that for θ ∈ [0, π/2) this region is equal to {(x, y) : y ≥ −mx} where 
m = tan θ. The upper half plane is given by H0 and the right half plane is Hπ/2. In this 
latter case, we use the extended reals, and write m = ∞. The enumeration of lattice 
paths in Hθ emulates the enumeration of lattice paths in H.

Lemma 7. Let S ⊂ Z
2 be a finite multiset and let Hθ = {(x, y) : x sin θ+ y cos θ ≥ 0} and 

let A(θ) = {i sin θ+j cos θ : (i, j) ∈ S}. The combinatorial class Hθ(S) is combinatorially 
isomorphic to H(A(θ)).

Furthermore, if S is a nontrivial or unrestricted step set for Hθ then the growth con-
stant KS(θ) for the sequence |Hθ(S)n| is the value KA(θ) determined by Theorem 2.

Proof. Here it suffices to consider the displacement of each step in the step set in the 
direction orthogonal to the boundary. See Fig. 2 for an example. The steps (0, 1) and 
(1, 0) respectively have displacement cos θ and sin θ in this direction, the other steps 
follow by linearity. This gives rise to a unidimensional half plane model with step set 
A(θ) to which Theorem 2 applies if A(θ) is nontrivial or unrestricted, which occurs 
precisely when S is nontrivial or unrestricted in Hθ. �
Example 1 (S = {N, E, SW}= ). For any θ ∈ [0, π/2], Q(S) ⊆ Hθ(S) and the following 
classes are combinatorially isomorphic

Hθ(S) ∼= H({cos θ, sin θ,− cos θ − sin θ}).

When θ �= π/2, we can scale the model by cos θ−1. Let m = tan θ, θ �= π/2, then 
Hθ(S) ∼= H({1, m, −m − 1}). For θ = π/2, remark Hπ/2(S) ∼= H({1, 0, −1}).
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3. Bounds for lattice path models in the quarter plane

As we have already noted in the introduction, the exact enumeration of quarter plane 
models has been well explored recently. In the case of small steps, Bousquet-Mélou and 
Mishna identified 79 non-isomorphic, nontrivial small step models [6]. The associated 
generating functions are known to be D-finite3 for 23 of these models. After algebraic, 
the D-finite models are easiest to enumerate asymptotically, and several approaches for 
this have been successful [4,15,16,3].

The non-D-finite models have been more elusive. Fayolle and Raschel have determined 
expressions for the growth constant for 74 models [10]. We summarize their formulas in 
Section 4. Melczer and Mishna determined formulas for singular models [14], and also 
for highly symmetric models of arbitrary dimension [15].

To describe these formulas we again need the drift of the model, denoted δ(S):

δ(S) =
∑
s∈S

s = (δx, δy).

Here we use a shorthand for classifying drift profiles. For each component, we note if the 
drift is positive (+), zero (0) or negative (−). For example, if δ(S) ∈ R>0 × R≥0, the 
drift profile is (+, +/0).

The inventory of the model is the Laurent polynomial S(x, y) defined

S(x, y) =
∑

(i,j)∈S
xiyj .

This is the two dimensional analog to A(u), and it can be used to express some useful 
quantities

S(1, 1) = |S| δx = ∂

∂x
S(x, 1)

∣∣∣∣
x=1

= Sx(1, 1), δy = ∂

∂y
S(1, y)

∣∣∣∣
y=1

= Sy(1, 1).

The unidimensional case analysis depended upon the existence of a positive critical 
point of the inventory. Its existence was a consequence of the nontriviality of the model. 
The existence in two dimensional case follows from nonsingularity.

We use the result that in the case of a nontrivial, nonsingular model there is a unique 
solution (x∗, y∗) ∈ R

2
>0 to the equation Sx(x, y) = Sy(x, y) = 0. This is a consequence 

of equation manipulation: If there is no such (x∗, y∗) with x∗ and y∗ both positive then 
by a case analysis one can deduce a half plane containing the steps. Alternatively, the 
reader can refer to Theorem 4 of [5] to see a discussion of this fact in this context. We 
call this point the critical point of the inventory.

3 The generating functions satisfy linear differential equations with polynomial coefficients.
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3.1. Bounds from half plane models

An upper bound on the growth constant of a quarter plane model can always be 
determined by appealing to a half plane model using the same steps restricted to lie in 
a region containing the first quadrant. In this section we describe how to determine the 
half plane which gives the best bound. The main result is Theorem 8. It is followed by 
examples of its application, its proof, and then in Section 4 a proof that, in the case of 
small steps, the bound is the same as the exact formula of Fayolle and Raschel. In some 
cases, this is easy to see, as the upper bound is the same as the lower bound given by 
excursions.

Theorem 8 (Main theorem). Let S ⊂ Z
2 be a finite multiset that defines a nontrivial 

quarter plane model Q(S). Then,

1. The growth constant KS = limn→∞ q
1/n
n satisfies

KS ≤ KS(θ) for all 0 ≤ θ ≤ π/2;

where KS(θ) is the growth constant for the associated rotated half plane model, as 
defined in Lemma 7;

2. The function KS(θ) is continuous as a function of θ;
3. Let (x∗, y∗) be the positive critical point of the inventory polynomial of the step set 

S(x, y), if it exists. In the case that (x∗, y∗) ∈ [1, ∞)2, then KS(θ) is minimized at 
θ∗ = arctan ln x∗

ln y∗ with value KS(θ∗) = S(x∗, y∗). Otherwise, if (x∗, y∗) is not of this 
form, or does not exist, then KS(θ) is minimized at either 0 or π/2.

The minimum being obtained as described does not preclude it also being attained 
elsewhere. Notably, for many S, KS(θ) is a constant function of θ on some interval. More 
generally, these functions are a smooth convex curve for part of the domain, and then 
constant on the remainder. Before we prove Theorem 8, we consider some examples to 
develop some intuition on the behavior.

Example 2 (S = ). This is not a singular model. The inventory S(x, y) = y+ 1
y + x

y + 1
xy

has a unique critical point at (1, 
√

3). The optimal angle given by Theorem 8 is

θ∗ = arctan(ln(1)/ ln(
√

3)) = 0.

Remark H(S) ∼= H(A(0)) ∼= H({1, −1, −1, −1}). This leads to the bound KS ≤ KS(0) =
A0(

√
3) = S(1, 

√
3) = 2

√
3. This is tight in comparison to the formula given for KS by 

Fayolle and Raschel [10]. We shall see that this is a special case of Lemma 11.

Example 3 (S = ). This is a nontrivial, singular model. There is no point (x∗, y∗) as 
in the theorem statement, consequently the maximizing θ is either 0 or π/2. In fact, 
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KS(θ) is constant in the domain. We deduce KS ≤ KS(θ) = |S| = 4. This value is 
tight, according to the formulas of Melczer and Mishna [14]. The other singular cases of 
Melczer and Mishna behave similarly.

Example 4 (S = ). Let us expand this computation to illustrate the process in a generic 
case. More explicitly, the step set is S = {(0, 1), (−1, 0), (−1, −1), (0, −1), (1, −1)}, with 
inventory S(x, y) = y+x/y+1/y+1/(xy) +1/x. A little bit of calculus reveals that the 
critical point of P is (x∗, y∗) ≈ (1.6760.., 1.8090..). Thus, by the formula, the optimal 
angle satisfies

θ∗ ≈ tan(ln(1.6760)/ ln(1.8090)) ≈ 1.1881..,

and the associated rotated half plane model is given by

A∗ = {i sin(θ∗) + j cos(θ∗), (i, j) ∈ S}

= {0.7540..,−0.6568..,−1.4108..,−0.7540..,−0.0971..}.

The critical point of the inventory of A∗ is τ ≈ 2.1950... The evaluation of this inventory 
at τ is 4.2147.. This is precisely the evaluation of S at (x∗, y∗), which is approximately 
4.215.

Example 5 (S = {(−2, 1), (−2, 1), (−1, 0), (0, −1), (1, 1)}). This model has repeated steps, 
and a long step. Here we compute the critical point ( 3

√
7, 3

√
7/3) ≈ (1.91, 0.63). The mini-

mizing angle here is 0. The best bound is computed KS(θ∗) ≈ 3.973. This approximation 
agrees with numerical estimates based on the first 200 terms.

Example 4 demonstrates that the best half plane is not defined by the perpendicular 
to the drift vector (a common hypothesis). Rather, the slope is connected to the Cramér 
transformation in probability [7]. Denisov and Wachtel assign the probability pij =
x∗iy∗j

S(x∗,y∗) to the step (i, j) so that the drift of the weighted steps, given by 
∑

(i,j)∈S pij , 
is (0, 0), and then apply tools for walks with no drift. It is clear here, perhaps, why 
their methods apply only to nonsingular walks – they require the existence of x∗ and y∗. 
Bostan, Raschel and Salvy in [5] also discuss the combinatorics of this transform, and 
show that S(x∗, y∗) is the growth constant for excursions in the quarter plane, which is 
a subclass of walks, hence S(x∗, y∗) is a lower bound for the growth constant. We offer 
the interpretation of S(x∗, y∗) as the exponential growth of walks restricted to the half 
plane Hθ for the angle θ = arctan( ln x∗

ln y∗ ) (or the right half plane when y∗ = 1).

3.2. The function KS(θ)

In the case of half plane walks, the growth constant for the counting sequence for 
the walks with arbitrary endpoint is either the number of steps, or given by the growth 
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constant for excursions. The deciding factor is the drift. These are the building blocks 
for functions KS(θ).

In our model of changing half planes, the drift is given by the following smooth function 
of θ:

∑
(i,j)∈S

(i sin θ + j cos θ) = δx sin θ + δy cos θ.

Thus, KS(θ) is either the number of steps, or given by Aθ(τθ), and switches between 
them when the drift is 0. Several different possibilities are presented in Fig. 1. Roughly, 
the function Aθ(τθ) is π-periodic and attains a single maximum given by the number of 
steps, and a single minimum. If that minimum is in the interval [0, π/2] it is also the 
minimum of KS(θ).

These functions are well behaved, and we can accurately predict the point where 
KS(θ) attains a minimum. First, we establish the continuity of KS(θ) in the next lemma, 
and then we determine the complete set of critical points, and whether or not they are 
maxima, or minima, in Lemma 10.

Lemma 9. Suppose S ⊂ Z
2 defines a nontrivial quarter plane model. Then KS(θ) defines 

a continuous function on the domain θ ∈ [0, π/2].

Proof. First, we remark that in the domain θ ∈ [0, π/2], if S defines a nontrivial quarter 
plane model, then either Aθ defines a nontrivial walk, or an unrestricted walk since it 
must have at least one step in the quarter plane. The value of KS(θ) is defined piecewise 
according to the value of δ(A(θ)) =

∑
(i,j)∈S(i sin θ + j cos θ) = δx sin θ + δy cos θ:

KS(θ) =
{
|S| if δ(A(θ)) ≥ 0
Aθ(τθ) otherwise.

The function Aθ(τθ) is continuous as a consequence of Lemma 6 since Aθ(τθ) can be 
expressed as a summation of the form

κ(x) =
�∑

j=1
τ(x)xj ,

evaluated at an ordering of the elements of A(θ). The condition δ(A(θ)) ≥ 0 defines 
an interval in [0, π/2]; consequently KS(θ) is piecewise continuous. Finally, as δ(A(θ))
approaches 0, KS(θ) tends to |S|, by Lemma 5 the function is continuous at points where 
δ(A(θ)) = 0. �

Next, we pinpoint the minimum of KS(θ) for θ in the domain [0, π/2].
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Lemma 10. Let S ⊆ Z
2 be the step set of a nontrivial quarter plane model. Let (x∗, y∗) be 

the positive critical point of the inventory polynomial of the step set S(x, y), if it exists. 
In the case that (x∗, y∗) ∈ [1, ∞)2, then KS(θ) is minimized at θ∗ = arctan ln x∗

ln y∗ with 
value KS(θ∗) = S(x∗, y∗). Otherwise, if (x∗, y∗) is not of this form, or does not exist, 
then KS(θ) is minimized at either 0 or π/2.

Proof. Let us rewrite this minimum, using Equation (2.2):

min
θ∈[0,π/2]

KS(θ) = min
θ∈[0,π/2]

min
u≥1

Aθ(u). (3.1)

Now, Aθ(u) can be expressed as an evaluation of S(x, y): Aθ(u) = S(usin θ, ucos θ). 
Thus, the latter minimum is equivalent to the following:

min
θ∈[0,π/2]

min
u≥1

Aθ(u) = min
x,y≥1

S(x, y).

Suppose that the minimum of S(x, y) on [1, ∞) is attained at (α, β). We examine the 
different cases and in each case, we can deduce u∗, θ∗ the choice of values for the variables 
u and θ that minimize Aθ(u).

If α = β = 1, then u∗ = 1 is forced, and any θ gives the same result. If α > 1, and 
β = 1, then u∗ = 1 and θ∗ = 0, and similarly if α = 1, and β > 1, then u∗ = 1 and 
θ∗ = π/2.

Now, if α > 1, and β > 1 then it is straightforward to deduce that the solution to the 
system usin θ = α, ucos θ = β has θ∗ = arctan(lnα/ ln β). Then KS(θ) is minimized at 
θ∗ = arctan(lnα/ ln β) with value S(α, β).

Suppose S(x, y) has a critical point (x∗, y∗) such that (x∗, y∗) ∈ [1, ∞)2. Since S(x, y)
is convex, it is minimized there. In this case, clearly (α, β) = (x∗, y∗). Otherwise, since 
S(x, y) is a convex function, it will be minimized on the boundary of [1, ∞)2. Thus, 
either α or β is 1 and so by the cases calculated above the minimum is attained at θ = 0
or θ = π/2. This gives the proof. �

Now, we put these ideas together.

Theorem 8. Since S is a nontrivial model, then Aθ is either a nontrivial or an unrestricted 
model for all θ ∈ [0, π/2]. For any θ ∈ [0, π/2], qn ≤ |H(A(θ))n| for any n, and thus the 
growth constants of the sequence satisfy KS ≤ KS(θ), and KS(θ) is minimized at the 
stated θ∗ by Lemma 10. �
4. The case of small steps: a different approach

4.1. The work of Fayolle and Raschel

Fayolle and Raschel [10, Remark 4.9] describe the location of the dominant singularity 
in the generating function for nonsingular small step quarter plane models. Their formula 
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depends on the drift δ(S) = (δx, δy), along with another parameter of the model called 
the covariance. We do not use this parameter, except to compare to their formulas. The 
covariance of a step set, denoted γ(S) is defined as

γ(S) = ∂2

∂x∂y
S(x, y)

∣∣∣∣
(x,y)=(1,1)

− δxδy.

In the case of small steps the inventory always has the form

S(x, y) = a(x)y + b(x) + c(x)y−1 = ã(y)x + b̃(y) + c̃(y)x−1.

They prove that there are four possible values for KS :

|S|, ρ−1
0 ≡ S(x∗, y∗)

ρ−1
Y ≡ b(1) + 2

√
a(1)c(1), ρ−1

X ≡ b̃(1) + 2
√
ã(1)c̃(1).

(4.1)

As before, (x∗, y∗) is the unique positive solution in R2
>0 satisfying

Sx(x∗, y∗) = 0 Sy(x∗, y∗) = 0.

Furthermore, in their Remark 4.9 they determine conditions on the sign of δ(S)
and γ(S) which decide which of the four values is correct for a given nonsingular 
model.

These results have some natural interpretations. If δ(S) is non-negative in both com-
ponents then the growth constant is as for unrestricted walks. If δ(S) is positive in the 
first component, and negative in the second, then growth constant is the same as the 
walks that remain in the upper half plane. The value S(x∗, y∗) is the growth constant 
for excursions [7,5]. If δ(S) is negative in both components then the growth constant is 
the same as the growth constant for excursions in the region. This mirrors the behavior
in the case of unidimensional walks. The specific formulas they obtain are simply the 
result of their cases picking out when KS(θ) is minimized at an end point or the critical 
point. In this way, we are able unify the six cases, and deliver a single interpretation of 
the formulas.

Specifically, the next lemma shows how the values ρ0, ρX , ρY , 1/|S| arise as KS(θ), 
for various θ.

Lemma 11. For any nontrivial quarter plane model Q(S) with S ⊂ {0, ±1}2, the following 
equalities hold:

ρ−1
Y = A0(τ0) ρ−1

X = Aπ/2(τπ/2).
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Proof. This is proved by simply unraveling the notation:

A0(u) =
∑

(i,j)∈S
uj = S(1, u)

and so A′
0(u) = [u]S(1, u) − 1

u2 [u−1]S(1, u) =⇒ τ0 =

√
[u−1]S(1, u)
[u]S(1, u) .

Consequently,

A0(τ0) = [y0]S(1, y) + 2
√

[y]S(1, y) · [y−1]S(1, y) = ρ−1
Y ,

which is precisely the formula for ρ−1
Y given in Equation (4.1). The ρX case is similar 

since Aπ/2(u) =
∑

(i,j)∈S ui. �
We conclude this section with a discussion that the bounds are tight, i.e.

KS = min
θ∈[0,π/2]

KS(θ)

for all small step quarter plane models. Recall that subsequent to the first version of 
this document being circulated, this has been proved by Garbit and Raschel, but we can 
understand it combinatorially.

Theorem 12. Let S ⊆ {0, ±1}2 be a finite set defining a nontrivial, nonsingular quarter-
plane lattice path model. The growth constant KS for the number qn of walks of length 
n in Q(S) satisfies

KS = min
θ∈[0,π/2]

KS(θ). (4.2)

The location of the minimum is summarized in Table 1.

To prove Theorem 12, we could directly relate the drift profile to the value of 
minθ∈[0,π/2] KS(θ), and show that this matches the values obtained by Fayolle and 
Raschel. The different cases to check are summarized in Table 1. One can consider 
the two equations/inequalities that arise from drift profiles and follow the implications 
in a straightforward way to deduce the sign of both lnx∗ and ln y∗. Some general case 
reductions can simplify some of the work. As the inequality manipulations are rather 
tedious, we do not include them here. It is also possible to simply test the 79 small step 
cases in order to verify the result. We have done this as well.
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Table 1
The value of KS for nonsingular nontrivial quarter plane models defined by a finite step set S ⊂ {±1, 0}2. 
This value can be computed either using sign information about the drift δ and the covariance γ, or from 
information about x∗ and y∗.

(δx, δy) γ x∗ y∗ ln(x∗)/ ln(y∗) tan(θ∗) KS

(+,+) < 1 < 1 + ln x∗

ln y∗ |S|
(+, 0)
(0,+)

(0, 0) 1 1 1 S(x∗, y∗) = |S|

(0,−) − > 1 > 1 + ln x∗

ln y∗ S(x∗, y∗)
0 1 0 0 S(x∗, y∗) = ρ−1

Y

+ < 1 − 0 ρ−1
Y

(+,−) < 1 − 0

(−, 0) − > 1 > 1 + ln x∗

ln y∗ S(x∗, y∗)
0 1 ∞ ∞ S(x∗, y∗) = ρ−1

X

− < 1 − ∞ ρ−1
X

(−,+) > 1 − ∞

(−,−) > 1 > 1 + ln x∗

ln y∗ S(x∗, y∗)

5. Extensions and applications

Our half plane bounding strategy does not rely on the size of the steps nor the convex 
cone in which the paths are restricted. Naive numerical calculations on examples of 
quarter plane walks with larger steps and of three dimensional models, so far tested in 
the non-negative octant, suggest the bounds remain tight.

Furthermore, in a recent study of three dimensional walks [2], Bostan, Bousquet-
Mélou, Kauers, and Melczer guessed differential equations satisfied by the generating 
functions of some small step models, and using this they were able to conjecture the 
exact growth constants. We verified that, in each of the cases for which they had data, 
the growth constant for the model O(S), where O = R

3
≥0, is equal to the minimal bound.

These observations led us to the following conjecture.

Conjecture 1. Let S ⊂ Z
d be a finite multiset of steps. Let KS be the growth constant for 

the enumerative sequence counting the number of walks restricted to the first orthant. Let 
P be the set of hyperplanes through the origin in Rd which do not meet the interior of 
the first orthant. Given p ∈ P let KS(p) be the growth constant of the walks on S which 
are restricted to the side of p which includes the first orthant. Then

KS = min
p∈P

KS(p).

Note that in all dimensions, KS(p) can be computed by projecting the steps onto 
the normal to p, and enumerating the resulting unidimensional model. Thus, if true, 
our conjecture would give an elementary way to understand and compute the growth 
constant of any class of first orthant restricted walks.



162 S. Johnson et al. / Advances in Applied Mathematics 92 (2018) 144–163
The work of Garbit and Raschel translates this into a probabilistic context, and in 
particular they have proved it in Corollary 9 of [11] for many nontrivial classes. With 
these same approach, they conjecture [18] that in some cases the sub-exponential growth 
also matches that of the minimizing half plane, further validating our interpretation, and 
suggesting a direction for future work.

Our half plane interpretation has important implications for random generation. A 
naive rejection strategy to generate quarter plane walks might first generate walks in the 
whole plane, and reject them as they leave the quarter plane. Models with a (−, −) drift 
profile perform rather poorly in this scheme. However, when the exponential growth rate 
of a class of quarter plane walks is the same as some class of half plane walks which 
contain it, the following rejection scheme is provably efficient. The half plane walks with 
rational slope form an algebraic language, and are easily generated. Rejecting walks from 
this class when they leave the quarter-plane is remarkably efficient. There are additional 
details required when the slope is not rational, and the theory is developed by Lumbroso, 
Mishna and Ponty [13].

Approximations such as we compute here can aid other direct strategies. For example, 
the strategy of diagonals used by Melczer, Mishna and Wilson relies on determining a 
set of critical points to set up the integral computations. Having a tight bound on the 
exponential growth in hand is useful in this process, as some candidates can be eliminated 
immediately.
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